Discrete and periodic complex Ginzburg-Landau equation for a hydrodynamic active lattice

نویسندگان

چکیده

A discrete and periodic complex Ginzburg-Landau equation, coupled to a mean is systematically derived from driven dissipative lattice oscillator model, close the onset of supercritical Andronov-Hopf bifurcation. The model inspired by recent experiments exploring active vibrations quasi-one-dimensional lattices self-propelled millimetric droplets bouncing on vertically vibrating fluid bath. Our systematic derivation provides direct link between constitutive properties system coefficients resultant amplitude equations, paving way compare emergent nonlinear dynamics---namely, formation dark solitons, breathers, traveling waves---against experiments. framework presented herein expected be applicable wider class oscillators characterized presence dynamic coupling potential particles. More broadly, our results point deeper connections physics matter.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative Periodic Solutions of the Complex Ginzburg-Landau Equation

A method of finding relative periodic orbits for differential equations with continuous symmetries is described and its utility demonstrated by computing relative periodic solutions for the one-dimensional complex Ginzburg-Landau equation (CGLE) with periodic boundary conditions. A relative periodic solution is a solution that is periodic in time, up to a transformation by an element of the equ...

متن کامل

Exact localized and periodic solutions of the discrete complex Ginzburg–Landau equation

We study, analytically, the discrete complex cubic Ginzburg–Landau (dCCGL) equation. We derive the energy balance equation for the dCCGL and consider various limiting cases. We have found a set of exact solutions which includes as particular cases periodic solutions in terms of elliptic Jacobi functions, bright and dark soliton solutions, and constant magnitude solutions with phase shifts. We h...

متن کامل

Time-Periodic Spatial Chaos in the Complex Ginzburg-Landau Equation

The phenomenon of time-periodic evolution of spatial chaos is investigated in the frames of oneand two-dimensional complex Ginzburg-Landau equations. It is found that there exists a region of the parameters in which disordered spatial distribution of the field behaves periodically in time; the boundaries of this region are determined. The transition to the regime of spatiotemporal chaos is inve...

متن کامل

The Complex Ginzburg-landau Equation∗

Essential to the derivation of the Ginzburg-Landau equation is assumption that the spatial variables of the vector field U(x, y, t) are defined on a cylindrical domain. This means that (x, y) ∈ R ×Ω, where Ω ⊂ R is a open and bounded domain (and m ≥ 1, n ≥ 0), so that U : R ×Ω×R+ → R . The N ×N constant coefficient matrix Sμ is assumed to be non-negative, in the sense that all its eigenvalues a...

متن کامل

Periodic Solutions of the Ginzburg-landau Equation

Spatially periodic solutions to the Ginzburg-Landau equation are considered. In particular we obtain: criteria for primary and secondary bifurcation; limit cycle solutions; nonlinear dispersion relations relating spatial and temporal frequencies. Only relatively simple tools appear in the treatment and as a result a wide range of parameter cases are considered. Finally we briefly treat the case...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2021

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physreve.103.062215